Mathematical Modeling and Analysis of Plasma Combustion System with Various Operational Parameters and Mesh Refinement Using Fluent

ANAND RAJ
M.Tech Scholar Mechanical Engg. Dept. VIST, Bhopal
PANKAJ KUMAR
Asst. Professor Mechanical Engg. Dept. VIST, Bhopal

ABSTRACT

Plasma combustion holds promise to replace an old conventional ignition system in thermal power generation with a more efficient and environmentally friendly method. This investigation utilizes computational fluid dynamics (CFD) simulations in ANSYS Fluent to examine the effects of operational parameters on plasma combustion systems. The parameters considered include mass flow rate, wall temperature (thermal wall enhancement), and mesh refinement. Answering questions arise, the flow and reaction characteristics are simulated with the realizable k-epsilon turbulence model and P-1 radiation models by varying the above parameters for temperature, pressure, velocity fields, and emissions. The following findings were drawn: wall temperature is the most influencing parameter-one way being higher temperatures, leading to high combustion efficiency, pressure, and temperature while drastically reducing NOx emissions thanks to a more complete combustion process; increase in mass flow rate increases performance but with lower priority; mesh refinement from coarse to fine grids improves the resolution and accuracy only, while the overall trend of results remains almost the same, proving its usefulness in accurate numerical modelling. The two combustion cases suggest that plasma combustion has a better thermal performance and, therefore, significantly lower emissions of CO₂ and NOx. This carries an environmental and economic rationale since these plasma systems use electrically-induced plasma to ignite the flames or stabilize the flame without the need of a costly oil-based fuel. On the whole, the result stresses the promise of plasma combustion systems as a clean, efficient, and costeffective way to carry out modern thermal power applications that satisfy energy sustainability goals and strict environmental standards.

Key words: Repowering, Thermal power plant, Energy, Plasma combustion Plasma CFD, Fluent etc.

1. INTRODUCTION

Presence of gases produced by combustion in the flue gas stream requires dilution before undergoing analysis. The data obtained would be a true representation only after such a dilution procedure. Dilution of flue gases consists of mixing the gas with a clean, inert gas in a special probe and/or bag arrangement. A mixing and sampling probe is inserted in the chimney stack and is equipped with an interconnecting hose leading to a sampling bag. The volume of dilution-air added is substantially greater than the volume of flue gas collected; therefore, the diluted sample is substantially homogeneous. At very high sampling rates, the quality of the mixture in the probe and bag is affected by turbulence; as a consequence, samples do not conform to the EEC standards and their results are questionable. Other approval standards exist for dilution arrangement. However, these are rarely, if ever, used and reluctance exists to refer to these methods in a strict technical sense.

Thermo Chemical Plasma Preparation of Coals for Burning (TCPPCB) is one of the promising technologies. The aforementioned TPP issues are resolved by this technique. There are two primary steps in the TCPPCB technology's realization. Numerical simulations are used in the first, while full-scale tests of coal combustion with plasma assistance in a TPP boiler are used in the second. The 200 MW Gusinoozersk TPP (Russia) boiler was chosen for the full-scale trials as well as the numerical analysis. The architecture of the concept includes a PFS chamber where arc plasma activates a certain amount of pulverized solid fuel (pf) that is isolated from the primary pf flow (Fig.1). For heating fuel mixtures, eliminating volatile coal arc components, and partially gasifying carbon, the air plasma flame provides additional oxidation and heat in addition to a high-temperature, radical-rich environment. This actively blended fuel has the ability to ignite the furnace's primary PF flow. This technique allows for boiler start-up and flame stabilization without the need for additional highly reactive fuel.

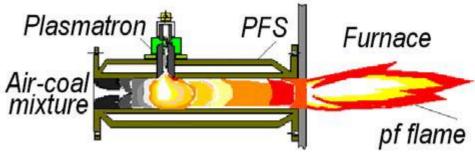


Figure 1 Arch plasma within a designated space

With steam generation capacities ranging from 75 to 670 TPH, plasma-fuel systems (PFS) have undergone extensive testing for their efficacy in boiler plasma start-up and flame stabilization across a variety of pulverized coal burners and 27 power boilers in multiple countries. A wide range of coal types, including bituminous, anthracite, brown coal, and different blends, were used in these experiments. The calorific values, ash content, and volatile matter content of the coals used in the tests varied significantly, ranging from 6700 to 25,100 kJ/kg, 15% to 48%, and 4% to 50%, respectively. The versatility and resilience of PFS technology in managing various coal qualities while preserving combustion stability and performance are highlighted by this wide range of fuel properties.

2. LITERATURE REVIEW

Beyca n Ibrahimoglu, M. Zeki Yilmazoglu, Ahmet Cucen [1] This study used computational modeling to assess the viability of repowering a thermal power plant boiler using plasma combustion systems. Plasma combustion systems installed directly on the boiler surfaces took the place of traditional fuel-oil burners in order to lower the plant's energy usage. Boundary conditions and design parameters were included in the thorough documentation of the integration process. Porous media models that represented the superheater and economizer tubes were used to analyze pressure losses across the system's components. Thermoflex software was used to accurately calculate the heat loads for each boiler segment by simulating the power plant in accordance with standard design protocols. Numerical simulations were then performed in ANSYS Fluent using these outputs to compare the furnace's temperature contours, velocity vectors, and isosurfaces. Incorporating the plasma system resulted in a slight decrease in input velocities across various domains. Interestingly, even in cases of overheating, convective surfaces were not adversely affected by the extra energy input from the plasma combustion system. Thermal power plants (TPPs) in Almaty, Shakhtinsk, and Ust-Kamenogorsk (TPP-2 and TPP-3) are investigating further advancements in plasma combustion technology. Direct-flow and vortex plasma-fuel systems (PFS) are being considered for use in coal-fired boilers. These plasma systems use coal directly, in contrast to traditional techniques that depend on fuel oil or natural gas for ignition and flame stability. A high-energy plasma torch gasifies the coal and partially oxidizes the char in the PFS, which receives a portion of the coal-air mixture. The majority of carbon is transformed into carbon monoxide due to a lack of oxygen, creating a highly reactive fuel (HRF) that is made up of partially oxidized char particles and flammable gases. When this HRF enters the main combustion chamber, it ignites quickly. Through simulations and practical testing, the application of PFS in current TPPs has been confirmed to be technically feasible, environmentally beneficial, and energyefficient—all with out the need for auxiliary oil-based ignition systems.

3. OBJECTIVE OF THE STUDY:

In present study we will investigate the plasma combustion model with various operating parameters like mass flow rate, Turbulence intensity and wall enhancement for the better mixing and penetration of Air/Fuel mixture. In the second step we will also investigate the mesh refinement of the plasma combustion model for the better accuracy of the simulation results.

4. METHODOLOGY

4.1 CFD METHOD APPLIED

ANSYS 14.5 was used to simulate the model and pre-process the necessary geometry configurations. The methodology employed in the CFD simulations for this specific investigation is demonstrated in the section that follows. GEOMETRY OR MODEL FORMATION IN STEP I

In order to save computational time, the geometry used for the simulation is only a subset of the entire exhaust gas system because the main goal of the study is to determine the NOx percentage. The ANSYS-created model is displayed below: -

Figure 4.1 CAD Model

Figure 4.2 Model of Mesh

STEP 2

MESH FILE - To be Meshed

STEP 3 CHECKS THE MESH: -

The console shows the outcomes of several mesh quality checks. To ensure mesh integrity, it is crucial to confirm that the stated minimum cell volume is a positive value. Additionally, to ensure consistency with the geometry of the model and simulation parameters, set the mesh unit to millimeters (mm).

METHODS

- 1. In response to pressure
- 2. 3D models are used.
- 3. Gravity enables

MODEL

- 1. The equation for energy is functional.
- 2. The K-Epsilon turbulence model was used.
- 3. P-1 is utilized since the radiation model operates more quickly. However, more precise outcomes in common models can be obtained by using the DO radiation model.
- 4. Eddy dissipation and finite rate in turbulence chemistry. The species model makes use of interactions.

STEP 4 SETUP FOR SIMULATION

4.2 Boundary conditions

- [1] INLET- 1. Fuel Inlet- Mass flow rate -0.5, 1.0 and 1.5 Kg/s
 - 2. Air Inlet Stoichometric Ratio calculated by CFD
- [2] Wall Enhancement Wall Temperature 500, 1000 and 1500 k
- [3] Mesh Refinement 1. Coarse Element size 3.21e-03
 - 2. Fine Mesh Element size 2.03e-04

4.3 MATERIAL

Properties of SOMA/EYNES coal.

Proximate analysis (as received) [wt.%]	
Moisture	25.22
Volatile matter	32.83
Fixed carbon	23.55
Ash	18.4
Ultimate analysis (dry basis) [wt.%]	
C	39.48
Н	2.95
N	0.59
0	12.83
S	0.53
Lower heating value [kJ/kg]	14,248

- 1. Mixing law is used and chemical kinetic mechanism is used for NOx evaluation.
- 2. Two polynomial coefficients for thermal conductivity should be defined.
- (a) 0.0057894
- (b) 5.1247*10⁻⁶
- 3. Viscosity polynomial coefficient (a) 8.945e-07
 - (b) 3.2145e-9
- 4. Determine the stable domain for the absorption coefficient.
- 5. 1.5e-9 is the scattering coefficient.

STEP 5 SOLUTIONS

Method

- 1. Coupled
- 2. Presto model is used: -

Presto is best suited for simulations of buoyant flow, where the velocity vector close to the walls may not match the wall surface precisely because the boundary layer is assumed to have uniform pressure. Only hexahedral or quadrilateral mesh elements can use this scheme because it can precisely capture pressure variations in these flow conditions: -

Pseudo transient is enabled

- 1. 0.1 The time scale factor for turbulent dissipation rate and turbulent kinetic energy
- 2. The time scale factor for species and energy is 10.

NOTE: - To converge the solution in fewer iterations, the energy and species equation uses a larger time scale size. SETTING UP THE SOLUTION: - The solution is set up.

RUN CALCULATION: - Start the calculation for 1500 iterations.

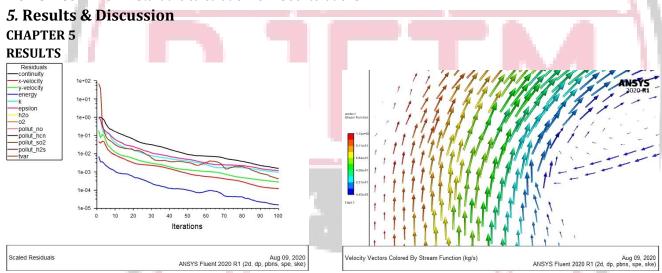


Fig. 1 Progress of Analysis Scales Residuals

Fig. 2 Velocity Stream line Function

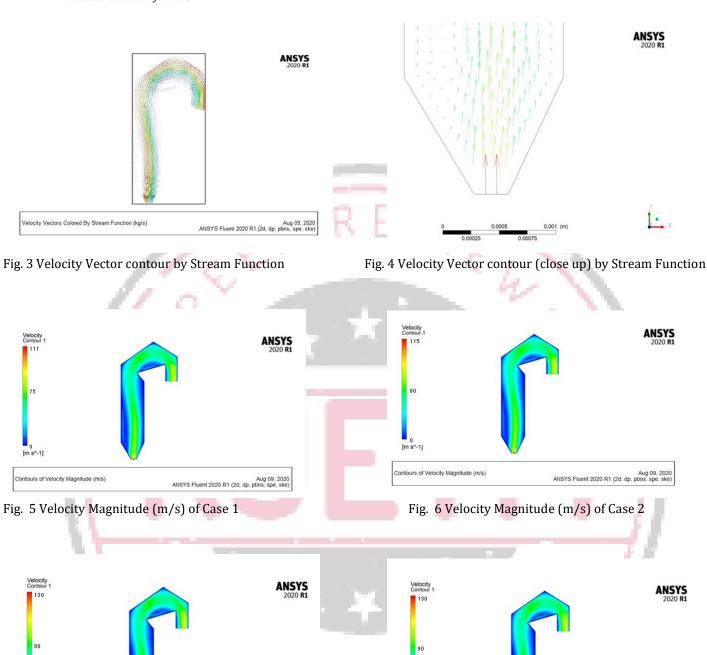


Fig. 7 Velocity Magnitude (m/s) of Case 3

Aug 09, 202 ANSYS Fluent 2020 R1 (2d, dp, pbns, spe, ske

Contours of Velocity Magnitude (m/s)

Fig. 8 Velocity Magnitude (m/s) of Case 4

Aug 09, 2020 ANSYS Fluent 2020 R1 (2d, dp, pbns, spe, ske)

ontours of Velocity Magnitude (m/s)

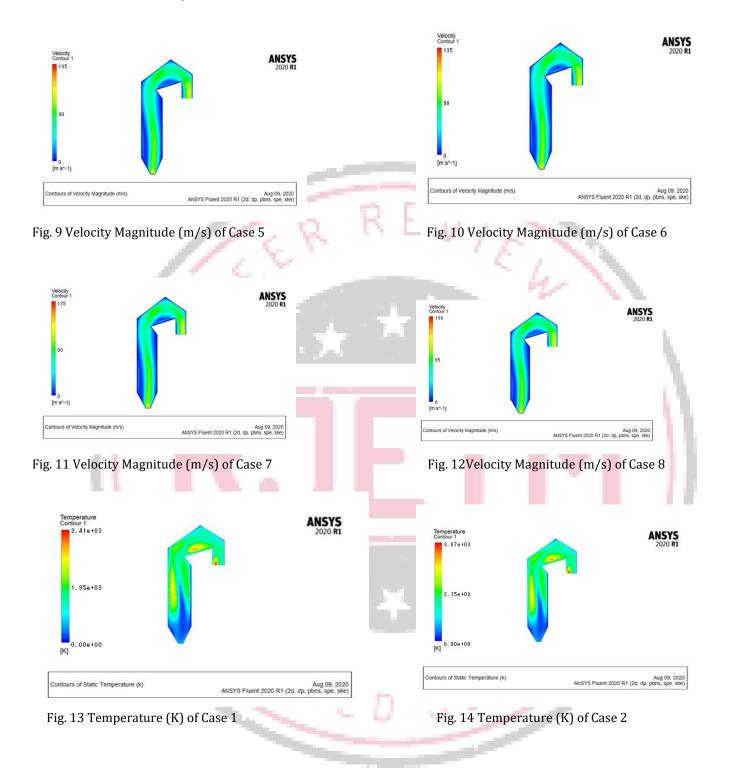


Fig. 19 Temperature (K) of Case 7

Fig. 20 Temperature (K) of Case 8

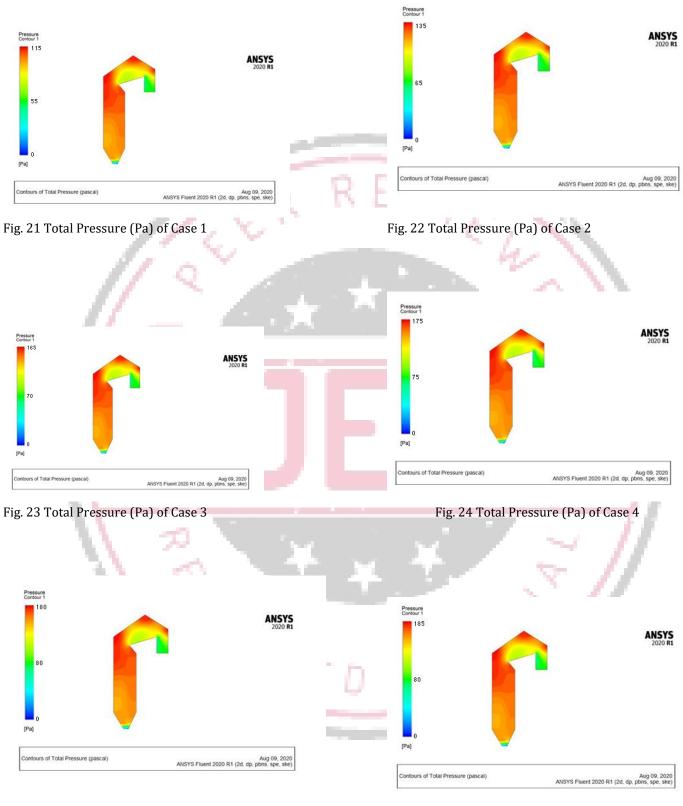
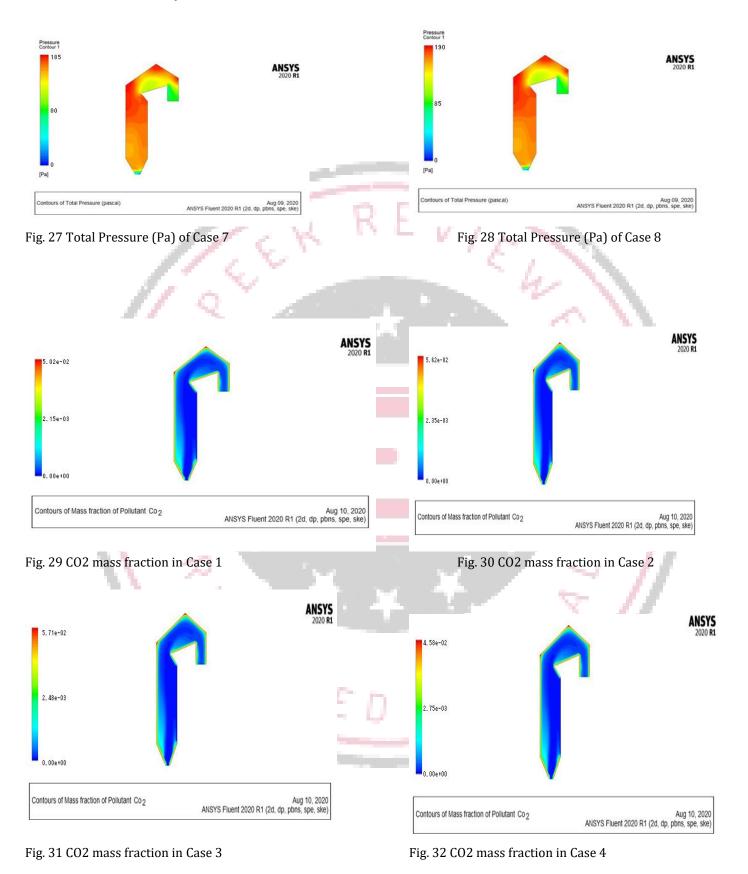
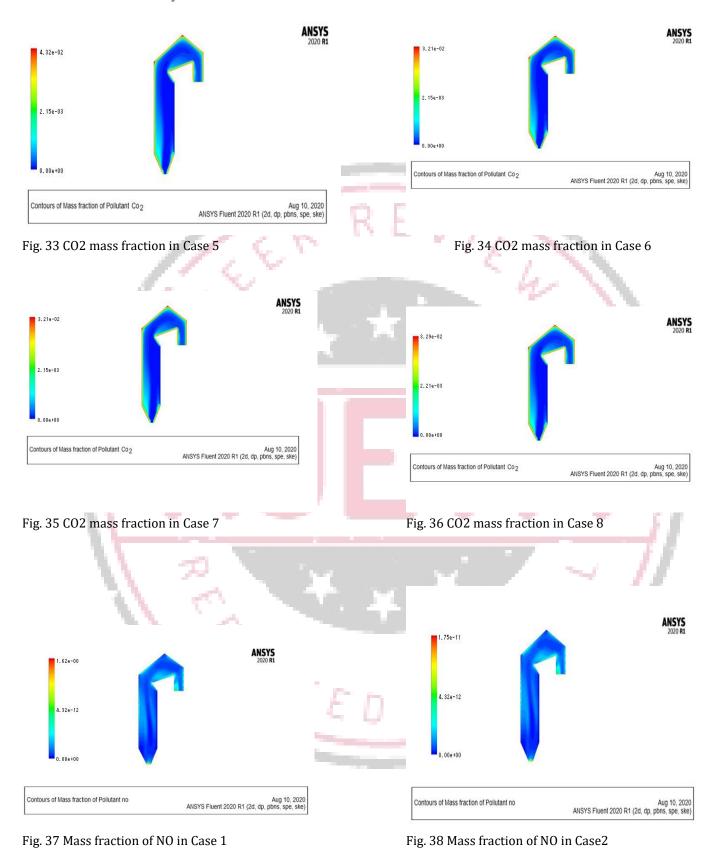




Fig. 25 Total Pressure (Pa) of Case 5

Fig. 26 Total Pressure (Pa) of Case 6

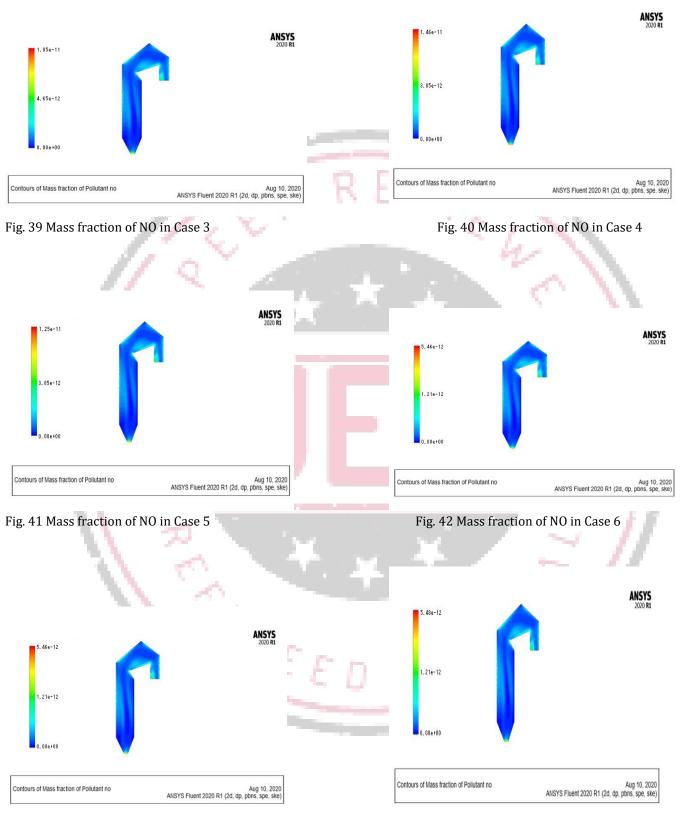


Fig. 43 Mass fraction of NO in Case 7

Fig. 44 Mass fraction of NO in Case 8

Result Table

Plasma Combustion Operational Parameters	Mass flow rate (Kg/s) Study No. 1			Wall Enhancement (K) Study No. 2			Mesh Refinement Study No. 3	
\	Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8
						The same of		
Final Outcomes	0.5	1	1.5	500	1000	1500	Coarse	Fine
Temperature					1.7			
(K)	3410	3870	4560	5120	5800	6560	6560	6700
Total Pressure						47,7	7.7	
(Pa)	115	135	165	175	180	185	185	190
Velocity					-	h. 1		1
(m/s)	111	115	130	130	135	135	135	138
Mass Fraction of CO2							-	
	5.02e-	5.62e-	5.71e-	4.58e-	4.32e-	3.21e-	3.21e-02	3.29e-02
	02	02	02	02	02	02		
Mass Fraction of NO2								
61	1.62e-	1.75e-	1.85e-	1.46e-	1.25e-	5.46e-	5.46e-12	5. <mark>4</mark> 8e-11
	11	11	11	11	11	12		

CONCUSION

The results table displays a comparison of the plasma combustion system's mesh refinement, wall enhancement, and different mass floe rates. Because the profile's combustion velocity slows down in plasma, the residence time of combustion increases, which helps reduce emissions because it allows for complete combustion and lowers the pressure drop in a stable system. Before and during the plasma combustion systems' integration, each burner stage's velocity profile was investigated. To guarantee mixing and turbulence, the flame must have a rotating property. Full combustion can be accomplished through turbulence and mixing. Lastly, we use chemical kinetics to evaluate NOx emissions and compute COx and NOx emissions from CFD simulation. The results table clearly illustrates the differences between conventional and plasma combustion, showing that the former reduces all emissions (COx & NOx). This is because the combustion is more thorough than it would be with conventional oil fuel. Plasma combustion is also a cost-effective method because it doesn't require oil for flame stability or startup. Plasma activation of coal particles enables more effective and ecologically friendly burning without the use of fuel-oil burners.

REFERENCES

- 1. Beyca n Ibrahimoglu, M. Zeki Yilmazoglu, Ahmet Cucen Numerical modeling of repowering of a thermal power plant boiler using plasma combustion systems. Article history: Received 5 May 2015 Received in revised form 12 February 2016 Accepted 22 February 2016.
- 2. V. E. Messerle, A. B. Ustimenko, and O. A. Lavrichshev Plasma-assisted ignition and combustion of pulverized coal at thermal power plants of Kazakhstan Proceedings of the 2014 International Conference on Power Systems, Energy, Environment.
- 3. E.I. Karpenko, V.E. Messerle, A.B. Ustimenko PLASMA-FUEL SYSTEMS APPLICATION IN HEAT-AND-POWER ENGINEERING Branch Centre of Plasma-Power Technologies of Russian J.S.Co. "UPS of Russia", Gusinoozersk, Russia, Research Institute of Experimental and Theoretical Physics, Research Department of Plasmotechnics, Almaty, Kazakhstan:
- 4. Arkadiusz Dyjakon[4] "PLASMA IGNITION SYSTEM FOR LIQUID FUELS" Institute of Heat Engineering and Fluid Mechanics, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, POLAND

- 5. Zhao Feng TIAN*, Peter J. WITT, M. Phillip SCHWARZ and William YANG "NUMERICAL MODELLING OF BROWN COAL COMBUSTION IN A TANGENTIALLY-FIRED FURNACE" Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009.
- 6. Dr Ian A B Reid "Retrofitting lignite plants to improve efficiency and performance" IEACCC Ref: CCC/264 ISBN: 978–92–9029–587-7 Copyright: © IEA Clean Coal Centre Published Date: April 2016.
- 7. A.S. Askarova "Mathematical modeling of heat and mass transfer in the presence of physicalchemical processes" Bulgarian Chemical Communications, Volume 48, Special Issue E (pp. 272 277) 2016
- 8. P. Gomes Angela O. Nieckele, Monica F. Naccache, Marcos Sebastião" Combustion performance of an aluminum melting furnace operating with natural gas and liquid fuel Applied Thermal Engineering, Volume 31, Issue 5, April 2011, Pages 841-851
- 9. Renzo Piazzesi, Maria Cristina Cameretti, Raffaele Tuccillo, "Study of an exhaust gas recirculation equipped micro gas turbine supplied with bio-fuels' Applied Thermal Engineering, Volume 59, Issues 1–2, 25 September 2013, Pages 162-173
- 10. Abdulaziz Alsairafi, Abbas Khoshhal, Masoud Rahimi, Ammar CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace International Communications in Heat and Mass Transfer, Volume 38, Issue 10, December 2011, Pages 1421-1427
- 11. D.J.E.M. Roekaerts, B. Danon, E.-S. Cho, W. de Jong, "Numerical investigation of burner positioning effects in a multi-burner flameless combustion furnace" Applied Thermal Engineering, Volume 31, Issues 17–18, December 2011, Pages 3885-3896
- 12. Jafar Ghafouri, Amin Maghbouli, Rahim Khoshbakhti Saray, Sina Shafee, "Numerical study of combustion and emission characteristics of dual-fuel engines using 3D-CFD models coupled with chemical kinetics" Fuel, 106, April 2013, 98-105
- 13. E.G. Pariotis, C.D. Rakopoulos, G.M. Kosmadakis, Evaluation of a combustion model for the simulation of hydrogen sparkignition engines using a CFD code International Journal of Hydrogen Energy, 35, Issue 22, November 2010, 12545-12560
- 14. Anand Odedra, Gasser Hassan, Mohamed Pourkashanian, Derek Ingham, Lin Ma, Paul Newman," Predictions of CO and NOx emissions from steam cracking furnaces using GRI2.11 detailed reaction mechanism A CFD investigation" Computers & Chemical Engineering, Volume 58, 11 November 2013 68-83
- 15. Ingwald Obernberger, Ali Shiehnejadhesar, Kai Schulze, Robert Scharler, "A new innovative CFD-based optimisation method for biomass combustion plants" Biomass and Bioenergy, 53, June 2013,48-53
- 16. S. Verhelst, G.M. Kosmadakis, C.D. Rakopoulos, J. Demuynck, M. De Paepe, "CFD modeling and experimental study of combustion and nitric oxide emissions in hydrogen-fueled spark-ignition engine operating in a very wide range of EGR rates" International Journal of Hydrogen Energy, Volume 37, Issue 14, July 2012, Pages 10917-10934
- 17. David Dodds, Audai Hussein Al-Abbas, Jamal Naser," CFD modeling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station" Fuel, Volume 102, December 2012, Pages 646-665
- 18. Chunhua Zhang et.al, "Effects of combustion duration characteristic on the brake thermal efficiency and NOx emission of a turbocharged diesel engine fueled with diesel-LNG dual-fuel", Applied Thermal Engineering 127 (2017).
- 19. Jeongwoo Lee et.al, "Classification of diesel and gasoline dual-fuel combustion modes by the analysis of heat release rate shapes in a compression ignition engine", Fuel 209 (2017).
- 20. Carmelina Abagnale et.al, "Combined numerical-experimental study of dual fuel diesel engine", Energy Procedia 45 (2014).
- 21. Peng Geng et.al, "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review", Renewable and Sustainable Energy Reviews (2016).
- 22. Abdelrahman Hegab, "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas", Renewable and Sustainable Energy Reviews 11 (2016).
- 23. Sohan Lal et.al, "The effect of compression ratio on the performance and emission characteristics of a dual fuel diesel engine using biomass derived producer gas", Applied Thermal Engineering 03(2017).
- 24. Gang Li et.al, "Effects of diesel injection parameters on the rapid combustion and emissions of an HD common-rail diesel engine fueled with diesel-methanol dual-fuel", Applied Thermal Engineering 108 (2016).
- 25. R.G. Papagiannakis et.al, "A combined experimental and theoretical study of diesel fuel injection timing and gaseous fuel/diesel mass ratio effects on the performance and emissions of natural gas-diesel HDDI engine operating at various loads", Fuel 126 (2017).